(Latin: carbo, arang) Karbon, suatu unsur yang telah ditemukan sejak jaman pra-sejarah sangat banyak ditemukan di alam. Karbon juga banyak terkandung di matahari, bintang-bintang, komet dan amosfir kebanyakan planet. Karbon dalam bentuk berlian mikroskopik telah ditemukan di dalam beberapa meteor yang jatuh ke bumi. Berlian alami juga ditemukan di kimberlite pipa gunung berapi, di Afrika Selatan, Arkansas dan beberapa tempat lainnya. Berlian sekarang ini diambil dari dasar samudera di lepas pantai Cape of Good Hope. Sekitar 30% berlian industri yang dipakai di AS sekarang ini merupakan hasil sintesis.
Energi dari matahari dan bintang-bintang dapat diatribusikan setidaknya pada siklus karbon-nitrogen.
Karbon
Karbon merupakan unsur kimia yang mempunyai simbol C dan nomor atom 6 pada tabel periodik. Sebagai unsur golongan 14 pada tabel periodik, karbon merupakan unsur non-logam dan bervalensi 4 (tetravalen), yang berarti bahwa terdapat empat elektron yang dapat digunakan untuk membentuk ikatan kovalen. Terdapat tiga macam isotop karbon yang ditemukan secara alami, yakni 12C dan 13C yang stabil, dan 14C yang bersifat radioaktif dengan waktu paruh peluruhannya sekitar 5730 tahun. Karbon merupakan salah satu dari di antara beberapa unsur yang diketahui keberadaannya sejak zaman kuno. Istilah "karbon" berasal dari bahasa Latin carbo, yang berarti batu bara.
Karbon memiliki beberapa jenis alotrop, yang paling terkenal adalah grafit, intan, dan karbon amorf. Sifat-sifat fisika karbon bervariasi bergantung pada jenis alotropnya. Sebagai contohnya, intan berwarna transparan, manakala grafit berwarna hitam dan kusam. Intan merupakan salah satu materi terkeras di dunia, manakala grafit cukup lunak untuk meninggalkan bekasnya pada kertas. Intan memiliki konduktivitas listik yang sangat rendah, sedangkan grafit adalah konduktor listrik yang sangat baik. Di bawah kondisi normal, intan memiliki konduktivitas termal yang tertinggi di antara materi-materi lain yang diketahui. Semua alotrop karbon berbentuk padat dalam kondisi normal, tetapi grafit merupakan alotrop yang paling stabil secara termodinamik di antara alotrop-alotrop lainnya.
Semua alotrop karbon sangat stabil dan memerlukan suhu yang sangat tinggi untuk bereaksi, bahkan dengan oksigen. Keadaan oksidasi karbon yang paling umumnya ditemukan adalah +4, manakala +2 dijumpai pada karbon monoksida dan senyawa kompleks logam transisi lainnya. Sumber karbon anorganik terbesar terdapat pada batu kapur, dolomit, dan karbon dioksida, sedangkan sumber organik terdapat pada batu bara, tanah gambut, minyak bumi, dan klatrat metana. Karbon dapat membentuk lebih banyak senyawa daripada unsur-unsur lainnya, dengan hampir 10 juta senyawa organik murni yang telah dideskripsikan sampai sekarang.
Karbon adalah unsur paling berlimpah ke-15 di kerak Bumi dan ke-4 di alam semesta. Karbon terdapat pada semua jenis makhluk hidup, dan pada manusia, karbon merupakan unsur paling berlimpah kedua (sekitar 18,5%) setelah oksigen. Keberlimpahan karbon ini, bersamaan dengan keanekaragaman senyawa organik dan kemampuannya membentuk polimer membuat karbon sebagai unsur dasar kimiawi kehidupan. Unsur ini adalah unsur yang paling stabil diantara unsur-unsur yang lain, sehingga dijadikan patokan dalam mengukur satuan massa atom.
Karakteristik
Diagaram fase karbon yang diprediksi secara teoritis
Karbon memiliki berbagai bentuk alotrop yang berbeda-beda, meliputi intan yang merupakan bahan terkeras di dunia sampai dengan grafit yang merupakan salah satu bahan terlunak. Karbon juga memiliki afinitas untuk berikatan dengan atom kecil lainnya, sehingga dapat membentuk berbagai senyawa dengan atom tersebut. Oleh karenanya, karbon dapat berikatan dengan atom lain (termasuk dengan karbon sendiri) membentuk hampir 10 juta jenis senyawa yang berbeda. Karbon juga memiliki titik lebur dan titik sublimasi yang tertinggi di antara semua unsur kimia. Pada tekanan atmosfer, karbon tidak memiliki titik lebur karena titik tripelnya ada pada 10,8 ± 0,2 MPa dan 4600 ± 300 K, sehingga ia akan menyublim sekitar 3900 K.
Karbon dapat menyublim dalam busur karbon yang memiliki temperatur sekitar 5800 K, sehingga tak peduli dalam bentuk alotrop apapun, karbon akan tetap berbentuk padat pada suhu yang lebih tinggi daripada titik lebur logam tungsten ataupun renium. Walaupun karbon secara termodinamika mudah teroksidasi, karbon lebih sulit teroksidasi daripada senyawa lainnya (seperti besi dan tembaga).
Karbon merupakan unsur dasar segala kehidupan di Bumi. Walaupun terdapat berbagai jenis senyawa yang terbentuk dari karbon, kebanyakan karbon jarang bereaksi di bawah kondisi yang normal. Di bawah temperatur dan tekanan standar, karbon tahan terhadap segala oksidator terkecuali oksidator yang terkuat. Karbon tidak bereaksi dengan asam sulfat, asam klorida, klorin, maupun basa lainnya. Pada temperatur yang tinggi, karbon dapat bereaksi dengan oksigen, menghasilkan oksida karbon oksida dalam suatu reaksi yang mereduksi oksida logam menjadi logam. Reaksi ini bersifat eksotermik dan digunakan dalam industri besi dan baja untuk mengontrol kandungan karbon dalam baja:
Fe3O4 + 4 C(s) → 3 Fe(s) + 4 CO(g)
Pada temperatur tinggi, karbon yang dicampur dengan logam tertentu akan menghasilkan karbida logam, seperti besi karbida sementit dalam baja, dan tungsten karbida yang digunakan secara luas sebagai abrasif.
Pada tahun 2009, grafena diketahui sebagai material terkuat di dunia yang pernah diujicobakan. Walaupun demikian, proses pemisahan grafena dari grafit masih belum cukup ekonomis untuk digunakan dalam proses industri.
Berbagai alotrop karbon memiliki ciri-ciri yang sangat berlawanan satu sama lainnya:
Intan nanokristal sintetik merupakan material terkeras yang diketaahui. |
Grafit adalah salah satu material terlunak yang diketahui. |
Intan merupakan bahan abrasif. |
Grafit adalah pelumas yang sangat baik. |
Intan tidak menghantarkan listrik (insulator). |
Grafit menghantarkan listrik (konduktor). |
Intan merupakan konduktor panas yang baik. |
Beberapa jenis grafit digunakan sebagai insulator panas. |
Intan berwarna transparan. |
Grafit berwarna kelam. |
Intan mengkristal dalam sistem kristal kubik. |
Grafit mengkristal dalam sistem kristal heksagonal. |
Karbon amorf bersifat isotropik. |
Karbon nanotabung merupakan bahan yang paling anisotropik yang pernah dibuat. |
Bentuk
Karbon ditemukan di alam dalam tiga bentuk alotropik: amorphous, grafit dan berlian. Diperkirakan ada bentuk keempat, yang disebut karbon “putihâ€. Ceraphite (serafit) merupakan bahan terlunak, sedangkan belian bahan yang terkeras. Grafit ditemukan dalam dua bentuk: alfa dan beta. Mereka memiliki sifat identik., kecuali struktur kristal mereka. Grafit alami dilaporkan mengandung sebanyak 30% bentuk beta, sedangkan bahan sintesis memiliki bentuk alfa. Bentuk alfa hexagonal dapat dikonversi ke beta melalui proses mekanikal, dan bentuk beta kembali menjadi bentuk alfa dengan cara memanaskannya pada suhu di atas 1000 derajat Celcius.
Pada tahun 1969, ada bentuk alotropik baru karbon yang diproduksi pada saat sublimasi grafit pirolotik (pyrolytic graphite) pada tekanan rendah. Di bawah kondisi free-vaporization (vaporisasi bebas) di atas 2550K, karbon “putih†terbentuk sebagai kristal-kristal tranparan kecil pada tepian grafit. Saat ini sangat sedikit informasi yang tersedia mengenai karbon “putihâ€.
Senyawa-Senyawa
Karbon dioksida ditemuka di atmosfir bumi dan terlarut dalam air. Karbon juga merupakan bahan batu besar dalam bentuk karbonat unsur-unsur berikut: kalsium, magnesium, dan besi. Batubara, minyak dan gas bumi adalah hidrokarbon. Karbon sangat unik karena dapat membentuk banyak senyawa dengan hidrogen, oksigen, nitrogen dan unsur-unsur lainnya. Dalam banyak senyawa ini atom karbon sering terikat dengan atom karbon lainnya. Ada sekitar sepuluh juta senyawa karbon, ribuan di antaranya sangat vital bagi kehidupan. Tanpa karbon, basis kehidupan menjadi mustahil. Walau silikon pernah diperkirakan dapat menggantikan karbon dalam membentuk beberapa senyawa, sekarang ini diketahui sangat sukar membentuk senyawa yang stabil dengan untaian atom-atom silikon. Atmosfir planet Mars mengandung 96,2% CO2. Beberapa senyawa-senyawa penting karbon adalah karbon dioksida (CO2), karbon monoksida (CO), karbon disulfida (CS2), kloroform (CHCl3), karbon tetraklorida (CCl4), metana (CH4), etilen (C2H4), asetilen (C2H2), benzena (C6H6), asam cuka (CH3COOH) dan turunan-turunan mereka.
Isotop
Karbon memiliki 7 isotop. Pada tahun 1961, organisasi International Union of Pure and Applied Chemistry mengadopsi isotop karbon-12 sebagai dasar berat atom. Karbon-14, isotop dengan paruh waktu 5715 tahun, telah digunakan untuk menghitung umur bahan-bahan organik seperti pohon dan spesimen-spesimen arkeologi.
Industri karbon adalah segala jenis [industri] yang berkaitan dengan pengolahan karbon dalam berbagai bentuknya. Unsur karbon yang digunakan dalam industri terdiri dari 3 modifikasi tropik yaitu amorf, grafit dan intan. Pada umumnya karbon tidak meleleh pada tekanan biasa dan reaktif secara kimia.
Karbon adalah suatu unsur yang sangat luwes dan berguna. Kegunaan karbon hanya akan jelas terlihat apabila kita sebutkan satu persatu dalam berbagai bentuk dalam kehidupan sehari-hari. Dengan sifatnya yang luwes, karbon diperlukan dalam: pigmen hitan dalam di dalam tinta cetak untuk buku, majalah dan surat kabar; kertas karbon; pensil warna hitam dalam berbagai warna cat, penyelesaian mobil, semir sepatu; penguat dan pengeras bahan karet, ban dalam dan barang-barang karet; dan sebagai unsur penting untuk konstruksi bermacam-macam peralatan listrik dan nuklir, mulai dari sapu penyedot debu untuk rumah tangga sampai dinamo yang paling besar dan rektor nuklir. Busur karbon digunakan untuk membuat radiasi tampak dan ultraviolet dalam sejumlah besar proses industri yang bergantung pada reaksi fotokimia.
Efisiensi Pembakaran Karbon Pada Batubara
Salah satu metode yang dapat menjadi alternatif ialah pembakaran batubara menggunakan campuran O2/CO2. Keunggulan utama dari metode ini yaitu adanya daur ulang aliran gas keluaran sehingga kandungan CO2 pada aliran tersebut sangat tinggi, mencapai 95%. Dengan kandungan CO2 yang tinggi, proses pemisahan karbondioksida menjadi lebih mudah dan ekonomis dibandingkan pada pembakaran batubara konvensional (menggunakan udara) yang hanya menghasilkan CO2 sekitar 13% pada gas keluaran. Gas keluaran dengan kandungan CO2 sampai 95% bahkan dapat langsung digunakan untuk proses oil enhanced recovery (EOR). Pembakaran batubara menggunakan campuran O2/CO2 ditampilkan pada gambar di bawah ini.
Batubara (fuel) dibakar dalam sebuah combustion chamber dengan menggunakan campuran gas oksigen dan karbondioksida. Oksigen didapatkan dari proses pemisahan nitrogen dan oksigen dari udara dalam sebuah Air Separation Unit. Karbondioksida sendiri merupakan gas hasil pembakaran batubara yang kembali dialirkan ke dalam combustion chamber. Aliran recycle karbondioksida ini menyebabkan peningkatan konsentrasi gas karbondioksida yang sangat signifikan di aliran keluaran sehingga memudahkan proses pemisahan karbondioksida itu sendiri. Pemisahan karbondioksida dapat diselenggarakan menggunakan metode konvensional seperti menggunakan CO2 absorber maupun metoda terkini seperti pemisahan dengan membran. Tingginya konsentrasi CO2 di aliran umpan absorber atau membran akan memudahkan proses pemisahan sehingga spesifikasi alat pemisah tidak terlalu memakan biaya besar.
Selain kandungan CO2 gas keluaran yang tinggi, metode ini juga mempunyai efisiensi pembakaran karbon yang tinggi. Hasil penelitian Liu (2005) menunjukkan bahwa pembakaran batubara menggunakan media O2/CO2 menghasilkan efisiensi pembakaran karbon yang lebih tinggi dibandingkan pembakaran batubara konvensional. Hal itu dibuktikan dari kandungan karbon baik pada fly ash maupun bottom ash yang jauh lebih sedikit.
Daur Karbon
- Karbon diambil dari gas CO2 oleh tumbuhan utk fotosintesis
- CO2 juga dihasilkan oleh tumbuhan dan hewan sbg hasil pernafasan
- Daur karbon melibatkan dua proses yang bersaingan, fotosintesis dan pernafasan
- Fotosintesis : CO2+ H2O C6H12O6 + O2
- Energi dari karbohidrat digunakan utk pernafasan
Pernafasan : C6H12O6 + O2 CO2+ H2O + energi
- Walau energi hasil fotosintesis berlebih, jika pengembalian dlm bentuk CO2 terlalu cepat dptmenyebabkan kerusakan bumi
Analisa Massa
Berapa massa sejumlah volum gas metana CH4 yang mengandung 6,02 x 1022 molekul CH4, diketahui Mr = 16?
Jawab:
CH4 =
= 0,1 mol
= 0,1 mol x 16 gram/mol
= 1,6 gram
Analisa Volum
Hitunglah volum 10 gram gas butana C4H10 dengan Mr = 58
Jawab:
Mr C4H10 = 58
Massa molar C4H10 = 58 gram/mol
Jadi, 10 gram C4H10 =
= 0,17 mol
Volum pada STP = 0,17 mol x 22,4 liter/mol
= 3,808 liter